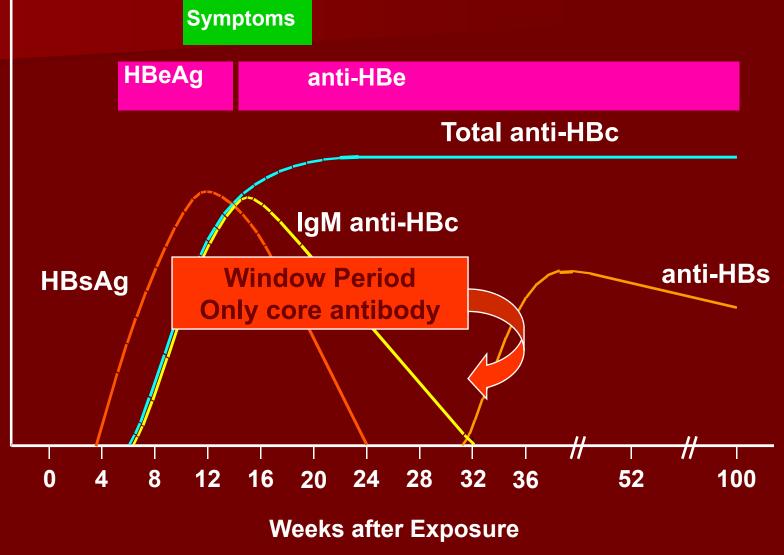
Hepatitis B: Clear as Mud

Melissa Osborn, MD, MSCR

Assistant Professor Emory University School of Medicine Atlanta, GA

1

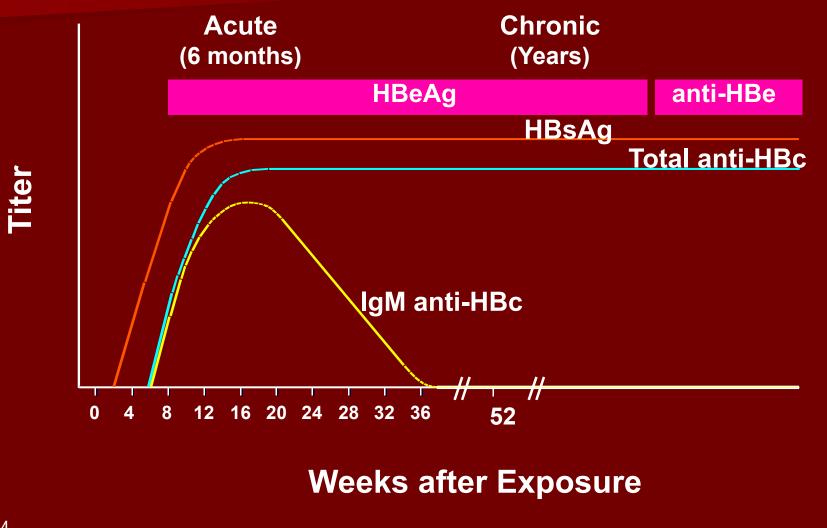
Objectives


1. Distinguish the various stages in the natural history of chronic hepatitis B

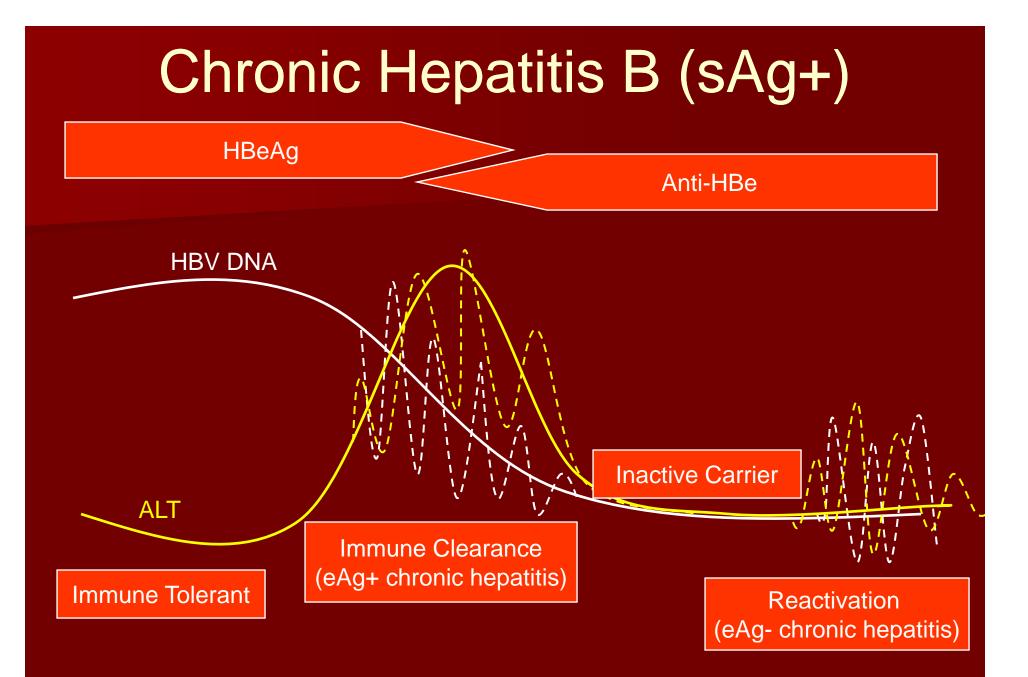
2. Know which tests are necessary to monitor hepatitis B activity, and when changes in therapy are indicated

 Understand the limitations of currently available hepatitis B therapies due to cross-resistance and limited potency

Acute Hepatitis B Virus Infection with Recovery


Typical Serologic Course

Titer


CDC

Progression to Chronic Hepatitis B Virus Infection Typical Serologic Course

Hepatitis B Serologic Diagnosis

	HBsAg	Anti- HBs	HBeAg	Anti- HBe	Anti- HBc	lgM anti- HBc	HBV DNA	ALT
Acute hepatitis B	+	-	+	-	+	+	+	High
Immunity (infection)	-	+	-	+/-	+	-	-	Nml
Immunity (vaccination)	-	+	-	-	-	-	-	Nml
Chronic Hepatitis B	+	-	+	-	+	-	+/-	High
Chronic Infection (Precore Mutant)	+	-	-	+	+	-	+	High
Chronic carrier	+	-	-	+	+	-	- or low	Nml

Chronic HBeAg- Disease (Pre-Core/Core Mutant)

- Lower HBV DNA levels but higher risk of cirrhosis (annual 8-10%/year)
- Represents a later phase of chronic hepatitis B
- No strict cutoff to discriminate between chronic carriers and eAg- hepatitis B

Natural History

SAg clearance occurs at a rate of 0.5-1% per year

Can still get HCC even if cleared

Annual incidence of cirrhosis 2-6% in HBeAg+ disease and 8-10%/year in HBeAg- disease

 Other risk factors: EtOH, HCV, HIV, high HBV DNA, Genotype C

Alterations in HBV Natural History Among HIV/HBV Coinfected

- More likely to become chronic carrier of HBV (surface antigen positive)
- More likely to be e antigen (HBeAg) positive
- Less likely to be e antibody (anti-HBe) positive
- Less likely to convert HBeAg to anti-HBe
- More likely to go from HBeAg- back to HBeAg+
- Can revert to HBsAg+ from anti-HBs
- Higher levels of HBV DNA

DiMartino, Gastro 2002; 123:1812-1822 Piroth, AIDS 2007; 21:1323-31 Colin, Hepatology 1999; 29:1306-1310 Rouphael, AIDS 2007; 21: 771-4 Cooley, J Clin Virol, 2003; 26:185-193 Benhamou CROI 2005 #933 Gilson, AIDS 1997; 11:597-606

Monitoring of Chronic Hepatitis B

Regardless of whether treatment is initiated, each patient with hepatitis B should have:

Every 3 months:Every 6 months:Every 12 months:ALTHBV DNA levelHBeAg (if + initially)ASTAnti-HBe

DNA levels and HBeAg, anti-HBe should also be checked with any flare of transaminases

Available HBV Therapies

Active against HIV and hepatitis B

Active against hepatitis B only

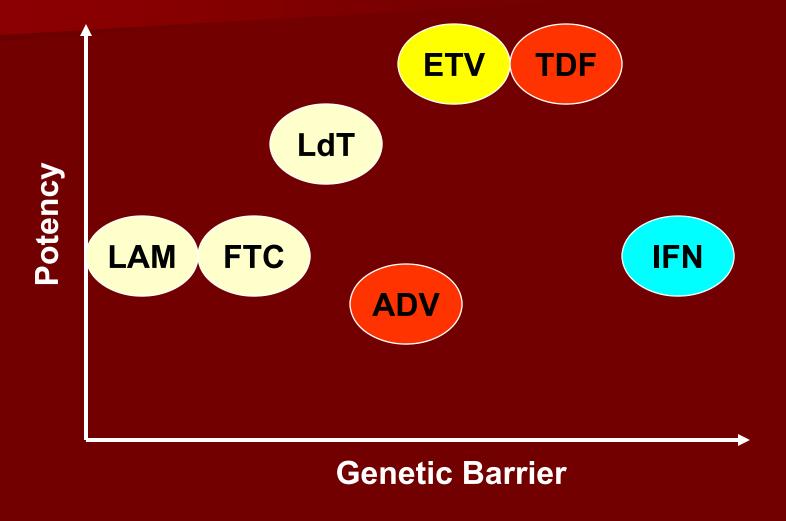
Lamivudine (LAM, 3TC)*

Emtricitabine (FTC)

Tenofovir (TDF)*

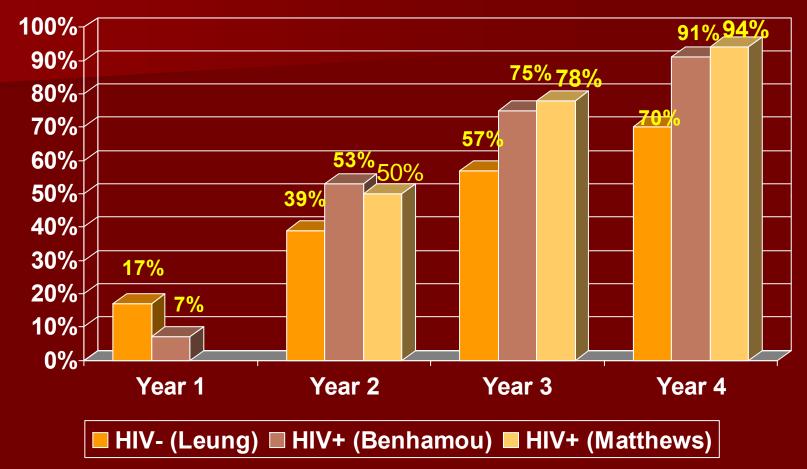
Adefovir (ADV)* Telbivudine (LdT)*

Interferon-α2b*


Peg-interferon- α2a*

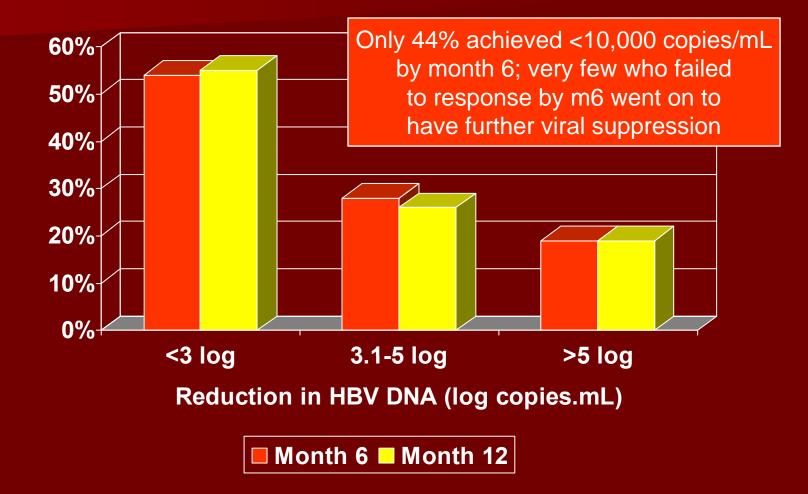
Entecavir (ETV)*

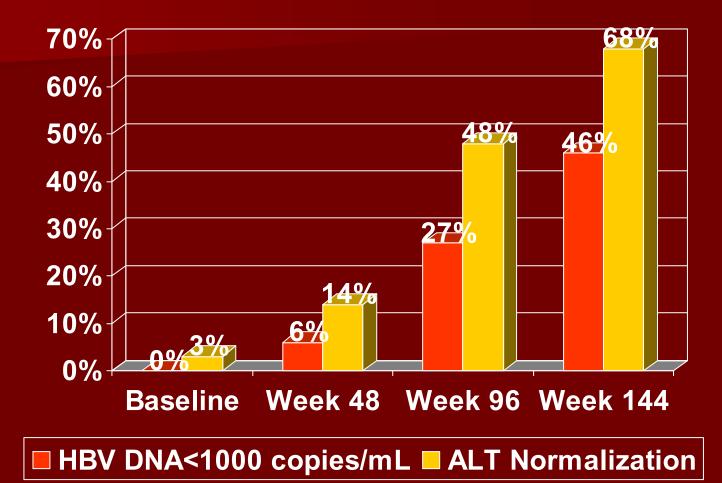
*FDA approved for hepatitis B


L-nucleoside analogues Acyclic phosphonates Deoxyguanosine analogues

Consider Potency and Potential for Resistance

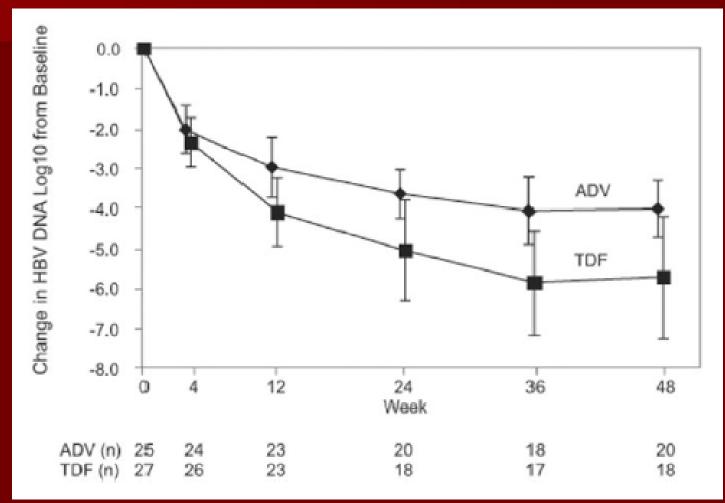
Adapted from Soriano, AIDS 2008; 22: 1399-1410


Lamivudine Resistance


M204V/I + L180M

Leung, Hepatology, 2001, 33: 1527-32 Benhamou, Hepatology, 1999, 30:1302-6 Matthews, AIDS 2006; 20:863-870

Adefovir: High rate of nonprimary response



ADV in HIV: Results at 3 years

Benhamou, CROI 2004, Abs 835

ACTG 5127: Tenofovir Noninferior to Adefovir for HBV/HIV

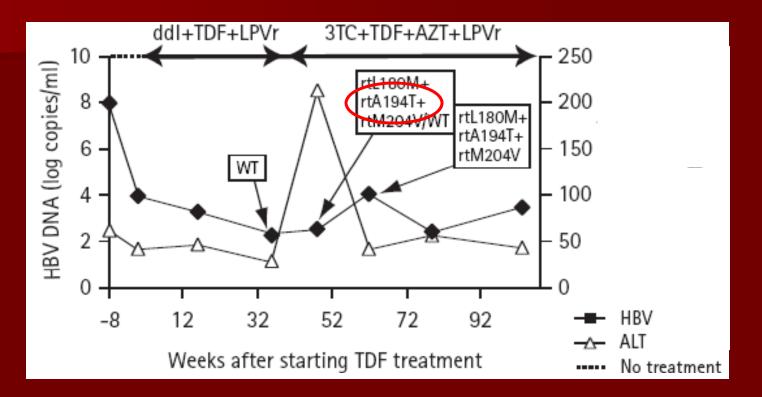
Peters, Hepatology 2006; 44:1110-6

Adefovir vs Tenofovir

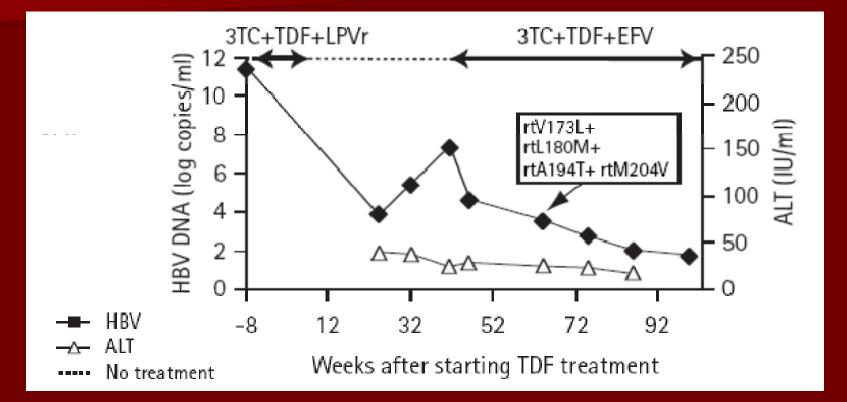
ADV (n=25)	TDF (n=27)
-4.03 log	-5.74 log
8.6%	5.7%
11.4%	20%
25%	36%
1 pt	0 pts
	-4.03 log 8.6% 11.4% 25%

HBV DNA DAVG₄₈ (log copies/mL)

Table 3. Serum HBV DNA Decrease in A5127 Study Subjects During Therapy With ADV or TDF					
	HBV DNA drop	w 12	w 24	w 36	w 48
ADV (n = 25)	<2	3	0	0	1
	2-4	17	15	11	8
	>4	3	5	7	8
	n/a	2	5	7	8
TDF (n = 27)	<2	1	1	1	1
	2-4	8	4	1	3
	>4	14	13	15	14
	n/a	4	9	10	9


w, Week; n/a: number of subjects for whom data was not available at that time.

Tenofovir Resistance


Baseline Characteristics (n=43)

Median age (years) Median CD4 (cells/ul) Median plasma HIV RNA (log copies/mL) Median ALT (IU/mL) Median serum HBV DNA (log copies/mL) Mean time on tenofovir (months) Mean time on lamivudine (months) HBeAg+ (%) 41 (IQR 37-42) 378 (IQR 235-475) 2.29 (IQR 1.7-3.4) 48 (IQR 31-59) 4.6 (IQR 3.0-8.0) 11.2 ± 6.7 35.3 ± 27.5 35 (82%)

Novel Mutations detected on TDF Therapy: Patient 1

Novel Mutations detected on TDF Therapy: Patient 2

Effect of clinical mutations on HBV susceptibility to TDF *in vitro*

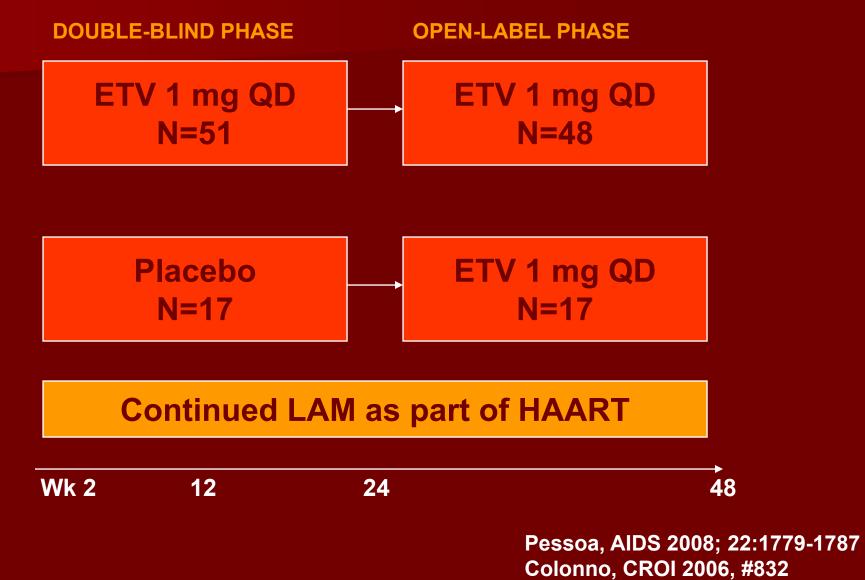
	Extracellular D	Extracellular DNA		
	IC ₅₀ (umol/l)	Fold IC ₅₀ **		
Wild-type	12.4	1		
A194T	95	7.6		
L180M+M204V	71	5.7		
L180M + A194T + M204V	>120	>10		

** 5-10 fold change = partial resistance; >10 fold confers resistance

A194T does not reduce efficacy to TDF

 10 patients failing TDF with L180M+M204V/I that were found to have A194T
 6 received TDF+/-FTC as salvage

All 6 had >3 log decrease in HBV DNA and clinical response to TDF


Tenofovir Resistance

No HBV polymerase/RT amino acid substitutions associated with TDF resistance were detected through 96 weeks of monotherapy

Virologic breakthrough was infrequent and not associated with phenotypic resistance

Most had nonadherence

Entecavir in HIV/HBV: ETV-038

Efficacy Endpoints

	Entecavir	Placebo	Р
	(n=51 w24	(n=17 w24 & w48)	
	n=48 w48)		
Mean HBV DNA @ w24	5.52 log copies/mL	9.27 log copies/mL	
Mean HBV DNA @ w48	4.79 log copies/mL	5.63 log copies/mL	
Change in DNA from baseline @ w24	-3.65 log copies/mL	+0.11 log copies/mL	<0.0001
Change in DNA from baseline @ w48	-4.20 log copies/mL	-3.56 log copies/mL	
HBV DNA<300 copies/mL @ w24	3/51 (6%)	0/17 (0%)	
HBV DNA<300 copies/mL @ w48	4/51 (8%)	0/17 (0%)	
ALT normalization w24	34%	8%	0.08
ALT normalization w48	37%	46%	
HBeAg loss w48	1 (2%)	0	0.56
HBeAg seroconv, w24	1 (2%)	0	

Pessoa, AIDS 2008; 22:1779-1787

Entecavir Resistance

Requires "two hits"
M204V/I +/- L180M as first hit

8 to 10 fold dec in susceptibility to ETV vs wild-type

Then mutation in 1169, T184, S202 or M250

These mutations on their own have minimal effect on susceptibility to entecavir

In presence of M204V/I, one of these leads to 10-250 fold decrease in ETV susc
M204V/I + 2 mutations → 500-1000 fold decrease in ETV susceptibility

Entecavir Resistance

NA-naïve

- After 4 years on treatment, a total of 3 patients (<1%) developed ETVr mutations
 - 2 of these had virologic breakthrough
 - Out of 663, 278, 149, 120 tested for resistance in years 1-4 respectively

LAM-R patients

- After 4 years on treatment, virologic breakthrough occurred in 1%, 10%, 16%, and 15% in years 1, 2, 3 and 4 respectively
- Cumulative probability of virologic breakthrough through 4 years 0.8% in naïve and 39.5% in LAM-R patients

Development of M184V in HIV

- 4 of 13 patients with >0.5 log decline had HIV rebound after achieving a nadir
 - All ART-experienced
 - 3 had developed M184V at time of HIV RNA rebound after a median of 98 days
 - 2 other ART-experienced patients had M184V before ETV initiation

2 ARV-naïve patients developed M184V after median 132 days of ETV

1 more without a baseline geno did as well

Telbivudine in HIV

No RCT for its use in HIV+

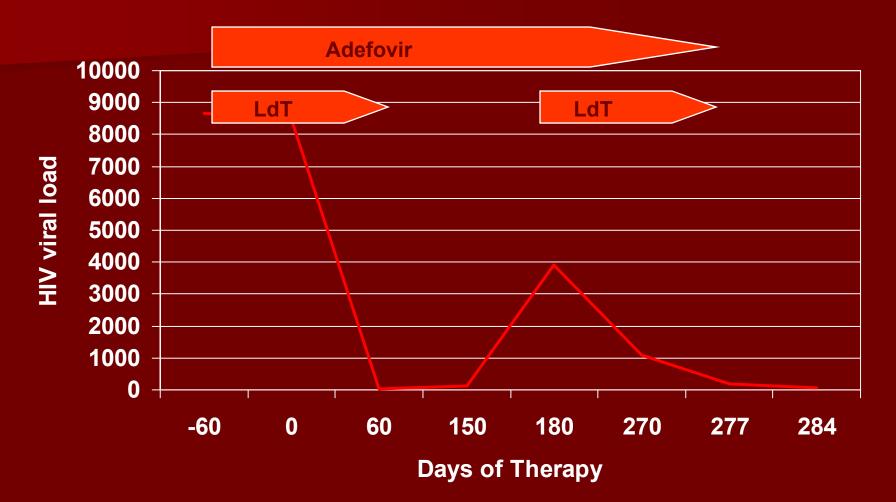
- Cross-resistance limits usefulness in ARVexperienced patients
- AASLD Guidelines currently do not recommend its use in HIV+
- EACS Guidelines present it as alternative to ADV in those not requiring HIV therapy

Telbivudine Resistance

Most frequent genotypic change M204I

 Only mutation causally associated with resistance

 Other mutations:


 L 20 (n=26)

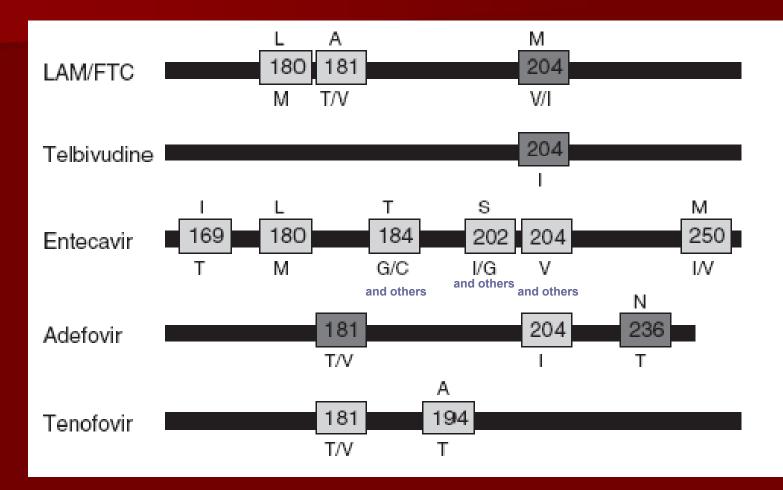
- L80 (n=26)
- L180 (n=4)
- L229 (n=6)

Single case of M204V/L180M double mutant seen for telbivudine at week 104 in GLOBE

Seifer, DDW 2007; Abs #93 Standring, DDW 2007; Abs. S1781 Liaw, Gastro 2009; 136: 486-495

Telbivudine: HIV Activity?

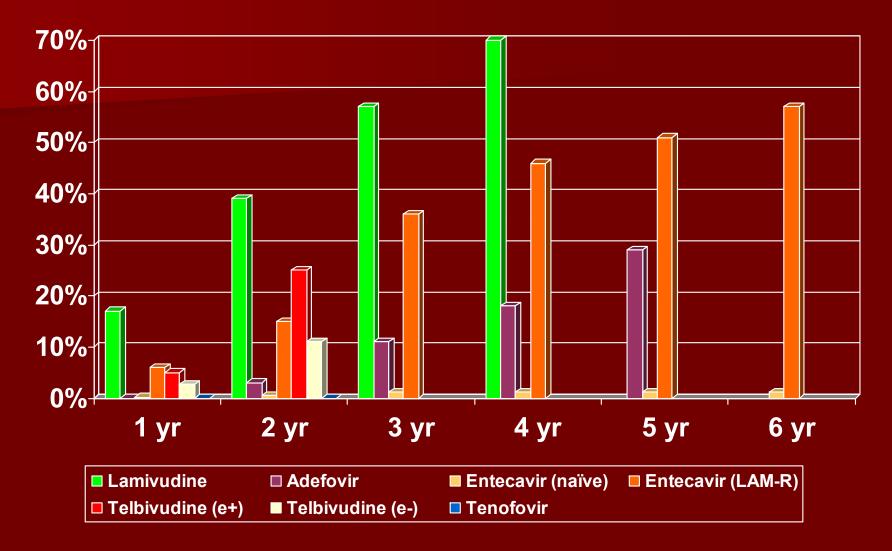
HBV Resistance Summary

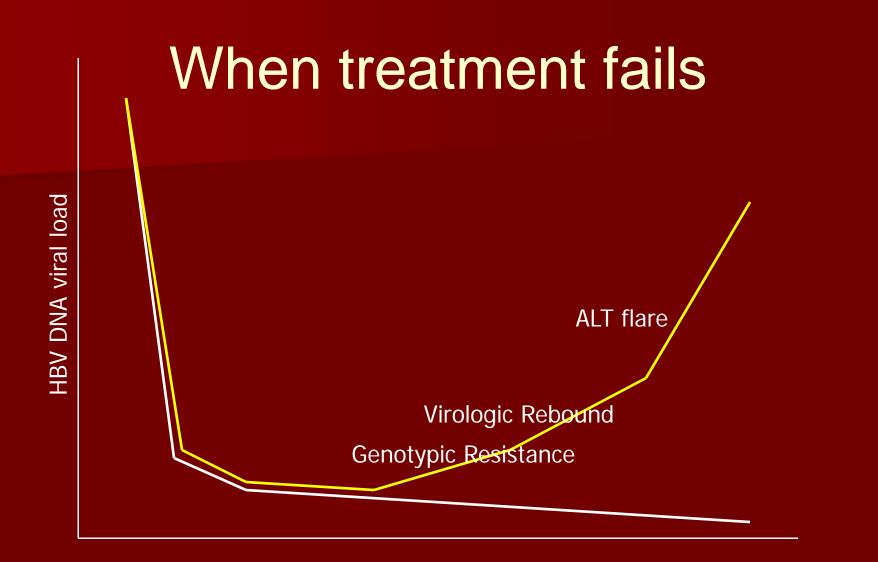

Lamivudine Adefovir

Entecavir

Telbivudine Tenofovir M204V/I, L180M N236T^a, A181V/T, 1233V^c ?Q215S, ?P237H, ?N238T, ?V207L^b M204V/I^d \rightarrow I169, T184^d, S202^d or M250 M2041 A194T

> ^aAngus, Gastro 2003; 125:292-97 ^bGallego, J Viral Hep 2008; 15:392-98 ^cSchildgen, NEJM 2006; 354: 1807-12 ^dTenney, AAC 2007; 51:902-911


Resistance Summary


Additional compensatory mutations that restore viral fitness can be seen with the development of drug resistance

Soriano, AIDS 2008; 22:1399-1410

Resistance Summary

Hadziyannis, NEJM 2005; 352: 2673-81 Lok, Hepatology 2007; 45:507-539 Snow-Lampart, AASLD 2008, Abs 977 Leung, Hepatology, 2001, 33: 1527-32 Lai, NEJM 2007; 257:2576-88 Tenney, EASL 2009, Abs 20

Weeks to months

Final Thought: Truvada failure?

- Anecdotal failures of HBV therapy with Truvada
- No clear data on what best strategy is
- No known mutations for tenofovir though clinical breakthroughs described
- If entecavir added, recommend removing lamivudine/emtricitabine from HIV regimen to prevent selective pressure on M204V/I in HBV polymerase

Can lead to faster development of ETV resistance

Take home points

- Document more than just "Hepatitis B" in problem list
 - Resolved hepatitis B, Chronic carrier, eAg+ CHB, etc
- The HBV DNA level should be followed regularly, along with ALT and eAg
- Sequencing of antivirals is important: consider prior lamivudine exposure when choosing drugs; avoid entecavir – lamivudine combinations