Diabetes Mellitus: Pharmacology and Disease Management

Michael King, MD

Assistant Professor Residency Program Director University of Kentucky Dept. of Family & Community Medicine

Objectives

1. Compare pharmacologic interventions for patients with diabetes.

2. Optimize management of diabetes to decrease potential microvascular and macrovascular complications.

Therapies

Constantly evolving treatments & evidence
 Important to know the type and physiology of diabetes

Type 1:

- Insulin (many types and preparations)
- Some new options (pramlintide)

Type 2:

- Oral agents and/or insulin/and or new options

Selecting an Oral Agent

Considerations:

- Efficacy for glycemic reduction
- Mechanism of action
- Side effects/contraindications
- Associated metabolic changes
- Patient adherence

Cost

T2DM Treatments and Decrease in A1C

Drug Class	HbA1c % Decrease
Sulfonylureas	1.0 to 2.0
(Glyburide, Glipizde, Glimepiride)	
Meglitinides (Repaglinide, Nateglinide)	0.5 to .5
Biguanides (Metformin)	1.0 to 2.0
Glitazones (Rosiglitazone, Pioglitazone)	0.5 to 1.4
Alpha-Glucosidase Inhib.	0.5 to 0.8
(Acarbose, Miglitol)	
Amylin Analogue (Pramlintide)	0.5 to 1.0
Incretin Mimetic (Exenatide)	0.5 to 1.0
DPP-4 Inhib (Sitagliptin)	0.5 to 0.8

Pathophysiologies and Pharmacotherapy Mechanisms of Action

	Insulin deficiency	Insulin Resistance	Excess hepatic glucose output	Intestinal glucose absorption
Sulfonylureas	\checkmark			
Meglitinides	\checkmark			
Metformin		\checkmark		\checkmark
Glitazones		\checkmark	\checkmark	
Alpha- Glucosidase Inhib.				
DPP-4 Inhib.	\checkmark		\checkmark	

ADA Algorithm for Management of Type 2 Diabetes

LESS well-validated therapies after lifestyle and Metformin

- Step 2:
 - Add Pioglitazone (if no hypoglycemia, edema, HF, bone loss) OR
 - Add GLP-1 agonist (if no hypoglcemia, weight loss, nausea/vomiting)
- Step 3:
 - Combination of preferred Sulfonylurea and Pioglitazone (no GLP-1 agonist)
 OR
 - Add basal insulin (no sulfonylurea, pioglitazone, or GLP-1)
- Final: Add Intensive Insulin

Insulin Secretagogues

Sulfonylureas: Long acting agents

- Second generation: glipizide, glyburide, glimepiride
- Cheapest oral medication

Meglitinides: Short acting (<1hr half life)</p>

- Repaglinide (Prandin), Nateglinide (Starlix)
- Expensive

Combinations

 Glyburide/Metformin (Glucovance), Glipizide/Metfomin (Metaglip), Rosiglitazone/Glimepiride (Avandaryl), Pioglitazone/Glimeperide (Duetact)

Sulfonylureas

- Little benefit beyond half of max dose
- Risks: Hypoglycemia, weight gain
- Renal Insufficiency/Failure:
 - Avoid Glyburide (active metabolites, renally cleared)
 - Glipizide (Glucotrol), inactive metabolites, and glimepiride (bilary/fecal excretion) preferred

Sulfonylureas

Many drug interactions:

- –
 ↓ action (steroids, diuretics, L-thyroxine, estrogen/progestins)

Decreases Microvascular enpoints, only trends toward decreasing macrovascular (UKPDS).

Biguanide: Metformin

- Decreases hepatic glucose production (main)
- Increased muscle glucose utilization (less prominent)
- Combines well with SU, acarbose, glitazones, DPP4 inhib or insulin
- Preffered Initial Treatment:
 - Less hypoglycemia, wt loss, enhances lipids, improves insulin resistence
 - Improves macrovascular enpoints (UKPDS)

Metformin : Contraindications

Renal insufficiency - Serum CR >1.5 males, >1.4 females Hepatic insufficiency CHF Dehydration ETOH abuse Hx of metabolic acidosis Type I diabetes Category B in Pregnancy

Metformin: Side Effects and Caveats

Nausea, diarrhea: may be self limited
Lactic acidosis; Identify risk factors
Hold with IV contrast (48 hrs before)

Uncommon to see benefit past 2000mg per day (max of 2550 mg)

Metformin: New Preparations

Glucovance = metformin + glyburide
Metaglip = metformin + glipizide
Avandamet = metformin + rosiglitazone
Actosplus met = metformin + pioglitazone
Janumet = metformin + januvia

The same precautions apply

Thiazolidendiones

Increases peripheral insulin sensitivity

 Activates PPAR (peroxisome proliferator activated receptor gamma)

Combination therapy with insulin, SU, metformin (mentioned previously)

Glitazones: General considerations

Do not use if baseline LFTs >3x normal

Can precipitate clinical heart failure so use cautiously

Contraindicated with NYHA HF Class III-IV

CVD? Black box warning

Glitazones: A Benefit or Harm?

- Data is clear to support A1C reduction (disease surrogate)
- No clear difference clinically in other oral hypogylcemic therapies
- No clear evidence to support improved patient oriented outcomes (mortality, MI, CVA)
- Some evidence supports increased CV risk of events, edema and HF episodes/ hospitalization

Richter,B, et al. *Cochrane Database Syst Rev.* 2007; (3). Richter,B, et al. *Cochrane Database Syst Rev.* 2006; (4). Nissen, SE, et al. *NEJM.* 2007;356:2457-71.

Remember Glucagon?

Effects of glucagon in glucose metabolism and utilization

- Suppressing something instead of increasing something
- Homoestasis = sum of the parts
 - Alpha α + Beta β = Glucose Control

- Glucagon and Insulin

Newer products focus on this physiology:

 Amylin analogue, Incretin Mimetic and DPP-4 Inhibitors

Pramlintide (Symlin): Synthetic Amylin

Amylin:

- Produced with insulin (beta cells)
- Works with insulin and glucagon to maintain normal blood glucose
- As beta cell function declines, diabetics become Insulin and Amylin deficient

Effects:

- suppress glucagon excretion
- control postprandial hyperglycemia
- delay gastric emptying, promote satiety
- Approved:
 - Type 1 diabetes, not achieving goal A1C
 - Type 2 diabetes, using insulin and not at goal.

Pramlintide

SC Injection before meals

- Lowers post prandial glucose
- Less fluctuation during the day
- Less mealtime insulin necessary
- Cannot be combined with insulin.

Improves A1C control compared to insulin alone.

- Reduction in body weight compared to insulin alone.
- Expensive

Pramlintide: Side Effects

Mainly nausea (Dose dependent)
Hypoglycemia with insulin
Others: fatigue, abd pain

No Cardiac, Hepatic or Renal toxicity
 No lipid abnormalities

Medical School Revisited?

Incretins: intestinal hormones released during eating

- GIP: glucose dependent insulino-tropic peptide
- GLP1: glucagon-like peptide

~ 60% of post-meal insulin secretion due to incretins (impaired in T2DM)

Dipeptidyl peptidase-4 enzyme (DPP-4): inactivates GLP1 and GIP

GLP-1 and Glucose Homeostasis

Enhances <u>glucose dependent</u> insulin secretion, AND

- Suppresses glucagon secretion
- Promotes satiety, leading to reduction of food intake

Regulates the rate of gastric emptying, limiting postprandial glucose excursions

Incretin Mimetic: Exenatide (Byetta)

Amino acid sequence partially overlaps that of the human incretin hormone GLP-1

T2DM, not achieved target A1C levels with metformin, sulfonylurea, or combination.

Approved in combination with Metformin and Sulfonylureas

No hypoglycemia unless taken with a sulfonylurea.
 Consider decreasing sulfonylurea dose

Exenatide: Caveats

- Not an insulin substitute in insulin-requiring patients
- Not for use Type 1 DM or with DKA
- Not recommended in patients with end-stage renal disease or renal impairment (GFR <30), or severe gastrointestinal disease
- Pancreatitis??
- Category C in Pregnancy

DPP4 Inhibitors

- Sitagliptin (Januvia, 2006) and Saxagliptin (Onglyza, 2009)
- DPP4 inhibitors
 - Improves A1C, fasting and post-prandial glycemia
- Oral Monotherapy, with metformin or a glitazone
- Not for Type 1 DM
- Recommended doses:
 - Sitagliptin 100 mg PO QD
 - Saxagliptin 5 mg PO QD

DPP-4 Inhibitors Side Effects and Cautions

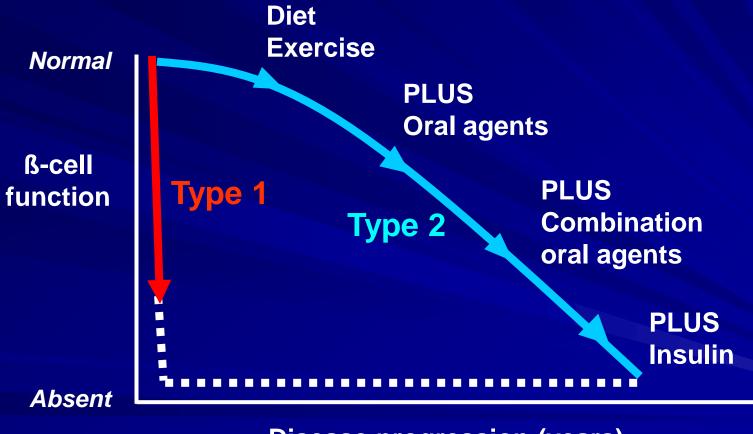
Adverse reactions was similar to placebo, including hypoglycemia, some concern of slight increase in upper respiratory infections

Renal Insufficiency

- No renal toxic effects but is efficacious at lower doses in renal insufficiency and ESRD (even hemodialysis)
- Sitagliptin:

■ 50mg: Moderate RI, CrCl <50 but >30 mL/min

(Cr >1.7 in men, >1.5 in women)


■ 25mg: Severe RI, Cr Cl <30 mL/min

(Cr >3.0 in men, >2.5 in women)

– Saxagliptin:

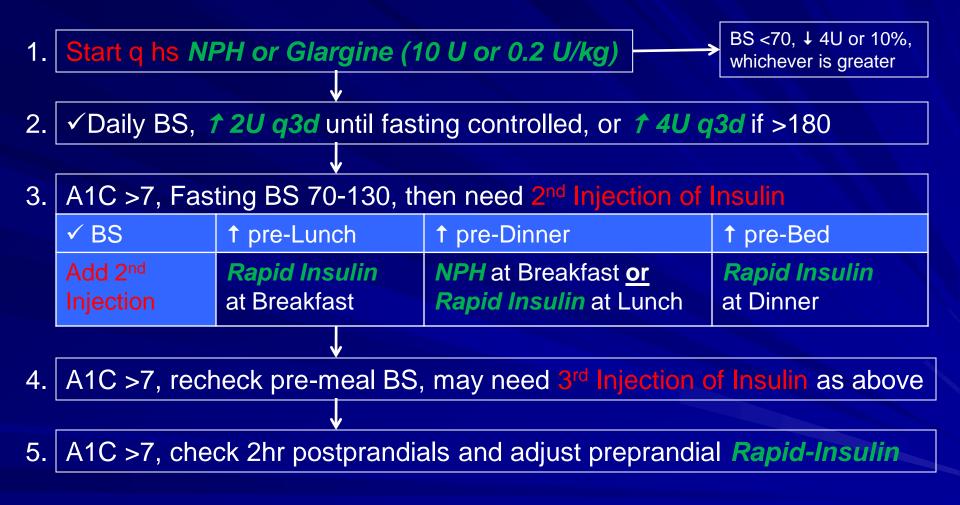
■ 2.5 mg daily, Moderate or Severe RI, CrCl ≤50 mL/min

Insulin: Sometimes a Necessary Therapy

Disease progression (years)

Insulin Therapy

Useful for both type 1 and type 2
Basal bolus
Mimic normal physiology
Know the timing
Basal or longer acting: NPH, glargine
Bolus: regular, lispro, aspart


ADA Algorithm for Management of Type 2 Diabetes

Well-Validated Core Therapies Step 1: at Diagnosis Lifestyle Modification and Metformin Step 2: Add Basal Insulin OR Add preferred Sulfonylurea Not glyburide or chlorpropamide If fails then stop sulforylurea and add basal insulin Step 3: Add Intensive Insulin

Oral Agents + Insulin Type 2 Diabetes:

 Improves glycemic control
 Lower doses of exogenous insulin
 Addresses multiple causes of hyperglycemia

Insulin Initiation and Titration

Insulins: Basal Therapy Fasting Control

Insulins	Onset	Peak	Duration
Long-Acting Analogues: Glargine (Lantus) Detemir (Levemir)	2-3 hrs 1 hr	None None	24+ hrs up to 24 hrs
Intermediate Acting: NPH	1-3 hrs	4-10 hrs	10-18 hrs

Insulins: Bolus Therapy Prandial Control

Insulins	Onset	Peak	Duration
Rapid Acting Analogues: Lispro (Humalog) Aspart (Novolog) Glulisine (Apidra)	10-15 mins	1-2 hrs	3-5 hrs
Short Acting: Regular	0.5-1 hr	2-4 hrs	4-8 hrs

Insulins: Premixed Prandial Control

Insulins	Onset	Peak	Duration
Humalog Mix 75/25 = 75% Lispro Protamine / 25% lispro Humalog Mix 50/50 = 50% Lispro Protamine / 50% lispro Novolog mix 70/30 = 70% Aspart Protamine / 30 % aspart	10-15 mins	1-3 hrs	10-16 hrs
70/30 = 70% NPH / 30% regular 50/50 = 50% NPH / 50% regular	0.5-1 hr	2-10 hrs	10-18 hrs

- Diabetes management is individualized and involves the patient and a provider-directed team
- Establishing tight glycemic control is the key to management
- Lifestyle changes to prevent onset of diabetes and CVD are the first step
- Type 2 diabetes is progressive; management will likely ultimately require insulin
- Providers should employ an aggressive, treat-to-target strategy